
Physics Placement Exam: Classical Mechanics and Electromagnetism
Date goes here

Please do all six problems. Generous partial credit may be awarded to partial solutions provided your
work is organized and legible. Note that various formulas that may be useful are on the last page of the
exam.

You must not use your phone, calculator, or any other device with messaging capabilities during the
exam.

Problem 1: A spacecraft of mass m0 is coasting with velocity v0 when at t = 0 it encounters a stationary
dust cloud of mass density ρ. Assume the spacecraft is a cylinder with cross-sectional area A, that v0
is in the direction of the cylinder axis, and that the dust sticks to its front as it moves into the cloud.

a) Find an expression for the acceleration of the spacecraft
b) Find the speed and the mass of the spacecraft as a function of time.

Problem 2: A simple pendulum of mass m and length l is connected at its point of support to a block
of mass M . The block is free to slide along a frictionless horizontal track.

a. Find the Lagrangian for this system assuming it is placed in a uniform gravitational field. Find
Lagrange’s equations.
b. What are the constants of motion?
c. What are the eigenfrequencies associated with small oscillations about the equilibrium position of
this system? Describe qualitatively the motion of the system associated with each frequency. You can
use diagrams to help explain.
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Figure 1: Setup for Problem 2.

Problem 3:

A particle of mass m is constrained to move along a frictionless wire. The wire is curved such that,
in cylindrical coordinates, it follows z(r) = z0 (r/a)β, where a and z0 are positive constants with units
of length and β ≥ 1 is also constant. The wire is rotating at a constant angular velocity Ω around the
vertical direction, as shown in Fig. 1. The system is in a uniform gravitational field with gravitational
acceleration g pointing downward.

a) Write the Lagrangian for an unconstrained mass in a uniform gravitational field using a cylindrical
coordinate system with the z-axis in the vertical direction.

b) Write explicitly the constraint equations that force the mass to remain on the rotating wire.

c) Determine the equations of motion for all the coordinates, introducing Lagrange multipliers for the
forces of constraint.

d) Obtain expressions for the forces of constraint. Give a physical interpretation of these forces.

e) Construct the Hamiltonian. Is it equal to the total energy? Is the energy of the system conserved?

f) Under certain conditions the mass will remain stationary with respect to the wire. Find those
conditions when β = 1 and provide a physical interpretation of your result.
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Problem 4: The electric charge density is given by

ρ(~r) = Q1δ
3(~r) +

Q2

4πr2
δ(r −R) .

That is, there is a point charge Q1 at the origin and a surface charge σ = Q2

4πR2 on the surface of a
sphere of radius R centered about the origin.
What is the electrostatic energy of this system of charges? (Show that your answer is correct in
appropriate limits.)

Problem 5: Consider a spherical shell of radius R. Suppose ∇2Φ = 0 both for r < R and for r > R,
and that the potential on the surface of the shell is given by Φ(r = R, θ, φ) = V0 (3 cos2 θ − 1).
a) What is Φ when r < R?
b) What is Φ when r > R?
c) What is the surface charge on the spherical shell?

Problem 6: Consider an electromagnetic wave ~E = E0e
i(kz−ωt)x̂ propogating in the ẑ direction, which

is incident upon a free electron of mass m and charge q. Choose a coordinate system in which the
unperturbed electron sits at the origin: x = y = z = 0.

a) Write down the equation of motion (Newton’s 2nd law) for the displacement x of the electron due to
the electric force of the passing wave. You may neglect radiative damping.

b) Assuming that the motion of the electron is harmonic: x = x0e
−iωt, find the amplitude of the electron

displacement x0.

c) What is the dipole moment of the electron induced by the passing EM wave? Assuming that electrons
are distributed uniformly throughout space with number density ne (thus forming an electron plasma),
what is the resulting polarization ~P of the plasma?
(Recall that polarization in this context is the electric dipole moment per unit volume.)

d) Calculate the index of refraction n of the plasma using the relationship between the permittivity and
the polarization ε = ε0 + P

E . (you may assume µ = µ0)

e) For what frequencies ω is n imaginary? Physically, what does an imaginary index of refraction mean
in this context?
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Potentially Useful Equations and Definitions

Spherical coordinates: x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ .

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
=

∂2

∂r2
+

2

r

∂

∂r
− L2

r2
, L2 = −

[
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]

Φ(r, θ, φ) =
∞∑
l=0

l∑
m=−l

Yl,m(θ, φ)

[
Φ
(1)
lm rl + Φ

(2)
lm

1

rl+1

]
satisfies ∇2Φ = 0 .

Y00(θ, φ) =
1√
4π

Y11(θ, φ) = −
√

3

8π
sin θ eiφ, Y10(θ, φ) =

√
3

4π
cos θ

Y22(θ, φ) =
1

4

√
15

2π
sin2 θ e2iφ, Y21(θ, φ) = −1

2

√
15

2π
sin θ cos θ eiφ, Y20(θ, φ) =

√
5

16π
(3 cos2 θ − 1)

Yl,−m(θ, φ) = (−1)m Y ∗lm(θ, φ)

Electrostatic energy (W ):

Discrete charges:

W =
1

8πε0

n∑
i=1

n∑
j 6=i

qiqj
rij

Continuous charge distribution:

W =
ε0
2

∫
E(r) ·E(r) d3r =

1

2

∫
ρ(r)Φ(r) d3r
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Physics Placement Exam
Quantum Mechanics, Statistical Mechanics and Thermodynamics

Date goes here

Please do all six problems. Generous partial credit may be awarded to partial solutions provided your
work is organized and legible. Note that various formulas that may be useful are on the last page of the
exam.

You must not use your phone, calculator, or any other device with messaging capabilities during the
exam.

Problem 1: A beam of spin-12 particles each with charge +e is directed along the +x direction. Each
particle in the beam is known to be in the |+z〉 state. At time t = 0 the beam enters a uniform magnetic
field B0 in the x-z plane oriented at an angle θ with respect to the z-axis. At a later time t = T , the
particles enter a Stern-Gerlach (SGy) device with magnetic field gradient directed along the y-direction.

What is the probability that the SGy device will find the particles to be in the |+y〉 state?

Recall that |+n〉 = cos θ2 |+z〉 + eiφ sin θ
2 |−z〉, where θ and φ are the standard polar and azimuthal

angles, respectively, in spherical coordinates of the vector n.

Problem 2: Consider a simple harmonic oscillator with frequency ω and energy eigenfunctions ψn(x).

a) Find the expectation value of x2 in the n-th energy eigenstate.

b) Suppose that the oscillator is in a state such that a measurement of the energy would yield either
1
2~ω or 5

2~ω, with equal probability. What is smallest possible value of 〈x2〉 in such a state?

c) Suppose that the state in part (b) begins with the minimum value of 〈x2〉 consistent with part a) at
time t = 0. Determine 〈x2〉 as a function of time.
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Problem 3: A hydrogen atom is placed in electric field E(t) that is uniform in the z-direction and has
the following time-dependence:

Ez(t) = 0 for t < 0

Ez(t) = E0e
−γt for t ≥ 0

yielding, for t ≥ 0, the following time-dependent potential energy:

V (t) = eE0e
−γt r cos θ .

If the hydrogen atom is initially in the ground state, what is the probability that it will be found in the 2P
state as t→∞? Work to first order in E0.
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Problem 4: A flat box of height ` and width and depth L with ` � L contains a monoatomic ideal
gas. You may assume the gas is arbitrarily dilute, but you should distinguish between low and high
temperatures relative to the energy scale set by the quantum energy gap for momentum excitations in
the vertical direction.

a) Compute the heat capacity CV as a function of temperature, neglecting the role of Bose or Fermi
statistics.

b) There is a regime where even for an arbitrarily dilute gas, you may no longer ignore the role of
quantum statistics (assuming there is more than one particle in the box). Find the temperature where
this becomes the case.

Problem 5: Consider a site which can be in one of three states: empty (energy 0), one electron of
spin +1

2 (energy ∆), one electron of spin −1
2 (energy also ∆). States with two or more particles are

forbidden. Suppose the site is coupled to a reservoir of chemical potential µ and temperature T .

a) Find the grand partition function.

b) Determine the chemical potential µ at which the expectation value of the number of particles on the
site is 1/2.

c) For this value of µ determine the average value of the magnetization M̄ =< M > and the mean
square fluctuation <

(
M − M̄

)2
>. Assume that the magnetization in some units is +1 for the spin +1

2
state.

Problem 6: One mole of helium gas and one mole of nitrogen gas are initially kept in two separate
containers of equal volume, both at room temperature. At some point you decide to connect the
containers, allowing the gases to mix.

a) How much entropy was generated by mixing the gases?

b) How much energy will you need at least to reverse this process and restore the original state,
assuming you operate at room temperature?

(Provide numerical answers to both a) and b), using kB = 1.381× 10−23 J/K .)
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Potentially Useful Equations and Definitions

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)

â =
1√
2

[
x̂

x0
+ i

p̂

(~/x0)

]
, â† =

1√
2

[
x̂

x0
− i p̂

(~/x0)

]
, x0 ≡

√
~
mω

â ψn =
√
n ψn−1 , â† ψn =

√
n+ 1 ψn+1

ψn(x) =
1√√
πx0

1√
2nn!

Hn(ξ)e−ξ
2/2 , ξ ≡ x

x0

H0(ξ) = 1 , H1(ξ) = 2ξ , H2(ξ) = 4ξ2 − 2

∫ ∞
−∞

du e−λu
2

=

√
π

λ
,

∫ ∞
−∞

du u2 e−λu
2

=
1

2

√
π

λ3
,

∫ ∞
−∞

du u4 e−λu
2

=
3

4

√
π

λ5

Y00(θ, φ) =
1√
4π

Y11(θ, φ) = −
√

3

8π
sin θ eiφ, Y10(θ, φ) =

√
3

4π
cos θ

Y22(θ, φ) =
1

4

√
15

2π
sin2 θ e2iφ, Y21(θ, φ) = −1

2

√
15

2π
sin θ cos θ eiφ, Y20(θ, φ) =

√
5

16π
(3 cos2 θ − 1)

Yl,−m(θ, φ) = (−1)m Y ∗lm(θ, φ)

For hydrogen atom,

R10(r) =
2

a
3/2
0

e−r/a0 , R20(r) =
1

√
2a

3/2
0

(
1− r

2a0

)
e−r/2a0 , R21(r) =

1
√

24a
3/2
0

r

a0
e−r/2a0

a0 =
~2

me2
, En = − me4

2~2n2

First-order time-dependent perturbation theory

cf←i(t) = δfi −
i

~

∫ t

0
ei(Ef−Ei)t

′/~〈Ef |Ĥ1(t
′)|Ei〉 dt′

where the energies are those of the unperturbed eigenstates and Ĥ1(t) is a time-dependent perturba-
tion.
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